PAPNext™
A Pap-Based DNA Test for Early Detection of Endometrial and Ovarian Cancers

eurofins
Genoma
Despite the many recent advances in cancer diagnosis and treatment, gynecological cancers are responsible for approximately 25,000 deaths per year and are the third leading cause of cancer-related mortality in women in the United States. Most of the deaths are caused by tumors that metastasize prior to the onset of symptoms, in part because there are no accurate screening methods for these cancers and they are often diagnosed at a late stage.

The high mortality associated with undetected gynecologic malignancies has made the development of an effective screening tool a high priority.

Worldwide, more than 200,000 deaths per year from gynecological cancers are expected.

Endometrial cancer is the most common gynecologic malignancy.

Ovarian cancer is less common but more lethal. It is often diagnosed at a late stage, when the 5-year survival rate is less than 30%.

• More than 22,000 women in the U.S.¹
• More than 14,000 deaths each year ¹
• More than 62,000 new cases diagnosed in the U.S. each year ¹
• More than 11,000 women die each year from the disease ¹
Prevention and early detection remain essential to decreasing cancer mortality. For many years, researchers have strived to develop a feasible and reliable way to detect early-stage gynecological cancers.

The introduction of routine screening for cervical cancer with cytology (the Papanicolaou test, otherwise known as “Pap smear”) has dramatically decreased the incidence and mortality of cervical cancer in the screened population, by permitting the detection of early-stage, surgically curable cervical tumors and their precursors.

Screening DNA in Pap smears has the potential to increase the rate of early-stage detection of endometrial and ovarian cancers in women who do not have any symptoms. This DNA could be exploited to detect somatic mutations in tumor DNA released from endometrial and ovarian cancers shed cells accumulating in the cervix.
A new dimension of screening for gynecologic cancers

Early detection of endometrial and ovarian cancers based on genetic analyses of DNA recovered from the fluids obtained during a routine Pap test.

A recent study demonstrated the ability to detect endometrial and ovarian cancer based on genetic analysis of DNA recovered from cervical fluids obtained during a routine Papanicolaou (Pap) test. When an advanced sequencing technology was used to screen Pap test samples, gathered from women endometrial and ovarian cancers, for somatic mutations in DNA, the assay identified cancer-related alterations.

In addition, no cancer-related alterations were detected in samples collected from women without cancer, yielding a very high specificity (>99.9%).

The assay identified cancer-related alteration in 93% of women with endometrial cancer

The assay identified cancer-related alteration in 45% of women with ovarian cancer

*90% (were early-stage cancers)

**47% (were early-stage cancers)

In addition, no cancer-related alterations were detected in samples collected from women without cancer, yielding a very high specificity (>99.9%).

Methodology

In-depth analysis of genes with advanced technology.

The PAPNext™ test is performed using highly advanced Next Generation Sequencing (NGS) technology to screen for tumor DNA mutation in 30 genes that are commonly mutated in endometrial and ovarian cancers. The technology is based on full exon sequences, at high sequence depth, of all genes included in the panel, which allow a more comprehensive analysis of each gene investigated.

Bioinformatics

Advanced bioinformatic analysis for variant interpretation to deliver the greater accuracy.

Analysis of NGS data is a complex process, imposing challenging requirements both in terms of computing resources and software. PAPNext™ uses powerful custom-built bioinformatics solutions to support variant analysis that enables fast, reliable and highly accurate results. When a variant is detected during the sequencing process, its pathogenicity will be investigated using a sophisticated software. A team of board-certified geneticists provide expert interpretation and clearly explained reports.
How PAPNext™ works

A groundbreaking technology allowing for a genetic analysis that is revolutionary

1. Cervical cells sample
2. DNA extraction
3. NGS analysis
4. Report

Tumor DNA mutation screening in the targeted genes using an advanced bioinformatic analysis. The result are provided with a comprehensive technical report.

Understanding PAPNext™ results

POSITIVE RESULT
This result shows that the test identified clinically relevant somatic mutation(s) in tumor DNA, in one or more of the targeted genes screened.

A patient with a positive test result should be referred for genetic counselling before any medical decisions are made.

Genetic Counselling
Genetic counselling is essential for any patient. Genoma will provide a genetic counselling session for those patients that screen positive, and the service is included in the cost of the test. It aids the patients in medical comprehension and enhances patient satisfaction by providing access to experts who are skilled at explaining genetics risk in terms patients can understand.

NEGATIVE RESULT
This result shows the test has not detected any clinical relevant mutation in the targeted genes screened.

A single test cannot always detect all possible genetic changes that cause a particular cancer condition, hence a negative result does not completely rule out the presence of malignancies screened.
Benefits

- **PAPNext™** can be easily implemented as routine gynecological screening performed at the same time women undergo a Pap test for cervical cancer. The additional DNA analysis provided with **PAPNext™** test is noninvasive and easily administered in the context of an annual gynecologic examination.

- **PAPNext™** testing has the potential to improve the conventional cytology screening for cervical cancer through the unambiguous detection of DNA from endometrial, ovarian and cervical carcinomas.

- Most of the deaths are caused by tumors that metastatize prior to the onset of symptoms. **PAPNext™** test allows early detection of endometrial, ovarian and cervical cancers at either a precancerous or early cancerous stage, when the disease is most curable.

Indications for testing

- **PAPNext™** test is meant for preventative surveillance of high-risk populations. It may be beneficial for (but not limited to):
 - **Genetic predisposition**
 - Patients with inherited predisposition to ovarian cancer, such as those with germline mutations in BRCA1 or BRCA2 gene or those with Lynch syndrome, caused by a germline mutation in MSH2 or MLH1 genes.

 - **Risk factors**
 - Patients who are at high risk for gynecologic cancers, e.g. because of hereditary factors, obesity, or symptoms such as postmenopausal or dysfunctional uterine bleeding.

 - **Family History**
 - Patients with a significant family history of endometrial and ovarian cancer.

 - **Positive screen**
 - Patients with positive conventional cytology screening test results.

 - **Early detection**
 - Any patient wishing to undergo to preventative surveillance for endometrial, ovarian and cervical cancers.
Cancer cells are sampled during routine Pap tests with a brush (a “Pap brush”) that is inserted into the endocervical canal to scrape the surface of the cervix and then rinsed in a liquid-filled vial containing preservative fluid.

For the detection of cervical cancers, cells from the fluid are applied to a slide for cytologic examination (the classic Pap smear). From the remaining sample, somatic mutations could be detected in tumor DNA of women with ovarian or endometrial, ovarian and cervical cancers.

5 EASY STEPS

1. **Order the PAPNext™ shipping kit**
2. **Fill in all requires TRF information and enclose the informed consent signed from the patient**
3. **Collect the sample (using the Pap brush provided with the shipping kit and rinse the brush in the liquid-filled vial)**
4. **Ship the sample to Lab**
5. **Receive results in as little as 10 days**
Advanced molecular diagnostics solutions using state-of-the-art technologies

- Test performed in Italy (Rome or Milan)
- Fast TAT: 10 days
- Overt than 20 years experience in molecular diagnostics
- Personalized genetic counseling with genetic counselors experts in discussing genetic test results and familial risks
- Laboratories ISO 17025 accredited with groundbreaking technologies
- Test available worldwide
- Over 250,000 genetic tests/year
- Dedicated R&D team Numerous peer-reviewed papers published in renowned international journals

ROMA - Laboratories and Medical Offices
Via Castel Giubileo, 11 – 00138 Roma (RM)
Tel.: +39 06 8811270 (6 PBX lines) - Fax: +39 06 64492025
E-mail: info@laboratoriogenoma.eu

MILANO - Laboratories and Medical Offices
Via Enrico Cialdini, 16 (Affori Centre) – 20161 Milano (MI)
Tel.: +39 02 39297626 (12 PBX lines) - Fax: +39 02 392976261
E-mail: info@genomamilano.it

www.papnext.it

Numero Verde 800 501 651